数学心

第六百二十九章 Hermitian-Einstein度量(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

另一个与卡拉比猜想密切相关的问题是代数几何中全纯向量丛的稳定性与其上的Hermitian-Einstein度量的对应问题,这个问题约化成一个与规范场理论相关的极为困难的非线性方程解的存在性问题。

1986年丘成桐与乌伦贝克(Uhlenbeck)合作,在卡勒流形上完全解决了这个问题。

稍后,唐纳森也在投影流形上用不同的方法将这个问题解决。

1988年,辛普森(Simpson)将这些结果推广并与霍奇变分理论相结合,发展成为代数几何中一个极为有效的工具。

凯勒流形的内在对称性

我们花了点时间来讨论度规,是为了要对凯勒度规和具备这种度规的凯勒流形能够稍微有点概念。一个度规是否为凯勒,和在空间上移动时,度规如何变化有关。

凯勒流形是一组叫作“厄米特流形”(Hermitian manifold)的复流形的子类。

在厄米特流形上,你可以把复数坐标的原点放在任何一点上,它在该点上的度规看起来像是标准的欧氏几何度规。

但当你离开该点时,它的度规就愈来愈不像欧氏的。

更明确地说,当移动到与原点的距离为ε时,度规系数本身的改变差异大致是ε倍。我们将这样的流形称为“一阶欧氏空间”。

所以如果ε是0.001英寸(1英寸=2.54厘米),当我们离开ε距离时,厄米特度规的系数与原先的差距会维持在约0.001英寸的误差内。至于凯勒流形则是“二阶欧氏空间”,这表示它的度规会更加稳定。当与原点的距离为ε时,凯勒流形的度规系数的改变大致是ε2倍。

沿用前面的例子,当ε=0.001英寸时,度规的变化误差只有0.000001英寸。

为何卡拉比要特别重视凯勒流形呢?要回答这个问题,我们得先考虑可能的选择范围。

比方说,如果真的想要严格限制,你可以坚持流形必须是完全平坦的。

但只要是二维以上的任何维度,唯一完全平坦的紧致流形就只有环面或它的近亲。

就流形而言,环面其实相当简单,因而也相当受限。我们希望能够更多样,看到更多可能性。至于厄米特流形,则又嫌限制太少,它的可能性太多太多了。于是介于厄米特和平坦之间的凯勒流形,正具有几何学家经常寻找的那种特质:它们具有足够多的结构,因此不会难以操作,但是结构又不会多到限制过多,以至于根本找不到符合你的明确条件的流形。

人气小说推荐More+

腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客
我能召唤历史喵
我能召唤历史喵
关于我能召唤历史喵:陈行最近玩了一款名为‘猫猫荣耀’的历史抽卡养成类猫咪游戏,只不过令陈行没想到的是,自己抽到的猫猫竟然都是真实存在的。元璋喵:“咱就是大明皇帝朱元璋,喵~清照喵:“豪放派?我们婉约派打的就是你们豪放派,喵呜~!望着这一大家子的猫,陈行忍不住叹了口气。直到金光闪过,一个自称是‘刘秀喵’的熊猫出现在了客厅之中……“我擦,熊猫也算猫?圣火昭昭,圣光耀耀,凡我弟子,喵喵喵喵。作为一个有
呜喵王之怒
渡执录
渡执录
大昭王朝设镇邪司,分御妖、镇鬼、狩灵三脉治之,处理天下玄异事。五百年前,神器乾坤珏降世,皇室夺得乾玉,坤玉却于混战中失踪。此后天下器灵皆陷入沉睡,狩灵一脉因无所用被朝廷遣散,唯有梅笑山师徒坚守传承。今九州灾异频发,国运式微。国师夜观星象,断言坤玉即将现世,唯有双玉合璧方可重铸山河。狩灵传人程庭芜,镇邪司首座贺云骁,因命运羁绊卷入这场纷争,共赴险途。当沉睡的器灵再度苏醒,当断代的狩灵之道重见天日。
会码字的馒头猫
听懂宠兽说话,我在末世带飞国家
听懂宠兽说话,我在末世带飞国家
(动物读心+末世+御兽流+带飞祖国+雄竞修罗场)周伊因意外猝死,穿成了异世小可怜不说,还一出场便遇到了危机!那便是被一个巨大的猫科动物追!紧急之下周伊想都没想疯狂逃命。也不知是不是生死危机让周伊激发了潜能,她居然于危难间激活了系统,拥有了动物读心的技能!甚至在系统的帮助下,契约了大猫,成为此方世界蓝星,第一个御兽师。系统001:【叮——检测到宿主触发主线任务,主线任务发布中——已发布主线任务。主
半糖布丁奶茶
英灵祭:全面战争
英灵祭:全面战争
关于英灵祭:全面战争:群像+英灵+历史+轻小说(非纯爽文、日常幽默、初中及初中以下的读者慎入、无cp、剧情严谨、逻辑清晰、智斗、武斗、杀伐果断)剑气、道术、魔法,东方英灵与西方英灵的对决!在历史的岁月长河中,他们是无人不知无人不晓的英灵,本不该相遇的ta们却因为一场祭典同时被召唤到了这个世界,这就是鲜为人知的英灵祭。女主灵芝,代表着为恩学院参加了本届英灵祭,拿着后羿弓的她却召唤了与之毫无关联的英
为你独爱