数学心

第六百一十七章 陈景润1+1=2(数论)(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

陈氏定理(1966)每一个充分大的偶数都是一个素数及一个不超过两个素数的乘积之和。简记为(1,2)。

诚如哈贝斯坦(H. Halberstam)与黎切尔特(H.E.Richert)所称,陈氏定理为“惊人的定理”,而且“从筛法的任何方面来说,它都是光辉的顶点”。

陈氏定理与筛法相关,筛法导源于公元前250年的“埃拉朵斯染尼氏(Eratosthenes)筛法”,1919年,布伦(V.Brun)对这一方法作出了重大改进,并将它用于哥德巴赫猜想。1947年,赛尔贝格(A.Selberg)给出了埃拉朵斯染尼氏筛法的另一个重大改进。

哥德巴赫猜想是1742年哥德巴赫与欧拉(L.Euler)的通信中提出来的,可以表述为:每一个不小于4的偶数都是两个素数之和。简记为(1,1)。

1900年,在希尔伯特的著名演讲中,又将这一猜想列入他的23个数学问题中的第八问题。布伦首先证明了:每个充分大的偶数都是两个素因子个数均不超过9的整数之和,简记为(9,9),余类推,(1,1)即表示哥德巴赫猜想对充分大的偶数成立。布伦的方法与他的结果先后被拉代马海尔(H.Rademacher),艾斯特曼(T. Estermann),黎奇(G. Ricci),布赫斯塔布(A.A. Buchstab)与孔恩(P.Kuhn)所改进。

将布伦、布赫斯塔布与赛尔贝格方法相结合,王元改进了布赫斯塔布的结果,他证明了(3,4)(王元,1956)。

再与孔恩方法相结合,他又得到了当时的最佳结果(2,3)(王元,1957)。

处理哥德巴赫猜想的另一途径是,将布伦筛法与林尼(Yu.V. Linnik)的大筛法相结合。首先是雷尼(A. Renyi)于1947年证明了,存在常数c使(l,c)成立,潘承洞与巴尔巴恩(M.B.Barban)独立地确定了c之值,潘承洞的结果如下:(1,5)(潘承洞,1962),(1,4)(潘承洞,1963)。

这是当时的最佳结果,由于邦比里( E. Bombieri)与阿•维诺格拉朵夫(A.I.Vinogradov)对大筛法及算术级数素数分布的均值定理的重大贡献,他们于1965年证明了(1,3),在上述成就的基础上,加上天才的创造,陈景润于1966年证明了(1,2),陈景润的方法在国外称为“转换原理”。

有人问陈景润:“你研究这个1加1等于2,有什么用?”

陈景润慌忙:“貌似没有实际作用,我以后会抓紧时间好好研究有用的东西。”

那个人问:“当真仅仅是为了玩,没有一丁点的用,也就是说数学中也有完全没用的东西?”

陈景润说:“其实我个人以为,如果要是把这样的思维给推广了就可以了,就是加和乘,是一个意思。毕竟任何数字都可以表示成是素数的乘积,那么任何数字都可以表示成是素数的相加,就能找到乘法和加法的关联性。”

那个人说:“那找到乘法和加法的关联性,就算是证明了加法和乘法是一回事,那能做什么?可以让乘法计算器变得跟加法一样简单?”

陈景润说:“在计算上已经有了对数尺,也不知道会不会有其他类型的关联了。但是如果环论是一个加和乘法组成的东西,那必然环论就只剩下一种运算了,那就跟群一样的,如果从一种宏观的构架来看,这算是数学家很了不得的大事。”

那个人说:“环论和群论成为一会儿事,那就不需要环了,环也能用群来表示,这又意味着什么?”

陈景润说:“很简单了,又任何类型的运算方式,都会往群这个方向上转化。多项式就会只剩下一种运算,而多项式这样的代数一阶逻辑谓词这样的表达,将会更加简洁,一阶逻辑谓词只有一种运算,就是或或者且的运算,只用其中一种即可。”

那个人说:“即使你说的很对,但是如果这样下去,就会造成你只有一种运算,但是表达另外一种运算就会显的很繁琐了。”

陈景润说:“是的,让一台电脑只有一个且运算,不见得这个电脑的计算量会减轻,所以在这方面可能没有太大的作用了。”

人气小说推荐More+

英灵祭:全面战争
英灵祭:全面战争
关于英灵祭:全面战争:群像+英灵+历史+轻小说(非纯爽文、日常幽默、初中及初中以下的读者慎入、无cp、剧情严谨、逻辑清晰、智斗、武斗、杀伐果断)剑气、道术、魔法,东方英灵与西方英灵的对决!在历史的岁月长河中,他们是无人不知无人不晓的英灵,本不该相遇的ta们却因为一场祭典同时被召唤到了这个世界,这就是鲜为人知的英灵祭。女主灵芝,代表着为恩学院参加了本届英灵祭,拿着后羿弓的她却召唤了与之毫无关联的英
为你独爱
舔狗雌性清醒后,踹掉无情渣兽夫
舔狗雌性清醒后,踹掉无情渣兽夫
关于舔狗雌性清醒后,踹掉无情渣兽夫:【穿书+雄竞+异能+追妻火葬场】云芝穿成一本兽世小说里的路人甲雌性后,对着小说里的男主单方面陷入了爱河,开始了对男主的紧追不舍。在男主面前,云芝化身为舔狗,渴了端水,饿了送上美食,冷了缝制兽皮衣服。舔了许久终于等到男主松口和她在一起。谁知男主心中那位白月光雌性的到来,让云芝成为了众人的笑话。甚至在危急关头时的二选一,已经成为族长的男主还是选择救其他人,放弃云芝
山城市花
爱情公寓之我竟是胡一菲的学弟
爱情公寓之我竟是胡一菲的学弟
关于爱情公寓之我竟是胡一菲的学弟:林霄没想到只是下班吃个麻辣烫而已,竟然就穿越到新的世界。原本以为只是重新过平淡的一生,就意外遇见了爱情公寓里面的人,还是武力值最高的胡一菲,林霄才知道原来现在这个世界是各种影视剧的综合世界。既然知道了爱情公寓的存在,前世就是个爱情公寓迷的林霄当然不能错过最好的朋友在身边、最爱的人在对面的生活啦。
一只快乐的梨
重生一回,我在医学界疯狂摆烂
重生一回,我在医学界疯狂摆烂
(神医+系统+重生+无脑爽文+医学界摆烂+多职业+娱乐圈+科学界)本文属于无脑爽文,反派有强行降智的嫌疑,当然,男主的主线并不是一帆风顺的,注意:本文设定为都市框架的前提下,略带一点点圣母内容,根据读者大大们的反馈情况可能会出现一些微虐情节,请不要给作者寄刀片。祝大家阅读愉快
文刂氵羊
腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客