数学心

第四百六十五章 莫尔斯不等式(流形)(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

亚瑟·凯利说:“考虑一个山区景观,用水淹没这个景观。当水达到一个的高度时,考虑这个区域的拓扑如何随着水的上升而变化,直观地看来,除了通过临界点的高度之外,它不会改变。”

詹姆斯·麦克斯韦尔说:“这些水只能发生如下三点:填满盆地;覆盖鞍座;淹没高峰。”

亚瑟说:“对于这三个关键点中的每一种:流域、通道和峰值,也可以叫为最小值,鞍形和最大值。”

詹姆斯说:“直观地说,盆地,山谷和山峰的指数分别为0,1和2。”

亚瑟说:“严格来说,关键点的指数是在那一点计算的不确定矩阵的负定子子矩阵的维数。在平滑地图的情况下,海森矩阵证明它是一个对称矩阵。”

在数学中,特别是在差分拓扑中,莫尔斯理论使得人们在莫尔斯之前,在拓扑背景下开发了莫尔斯理论。

莫尔斯开始研究微分拓扑,很多拓扑的结构都有不同的微分结构。

不同的微分结构在离散的点上,可以用相减做差分来分析。

做出差分的性质本身就可以区分很多不同的拓扑的结构。

必然的高亏格的,差分的数要大一些,低亏格的,差分的数要小一些。

当然了不论是什么拓扑的,都尽量的保证曲率是要相等的。

莫尔斯研究拓扑学,想把拓扑学能分解成很多单形。

然后去研究这些单形,根据单形的性质来推敲这个拓扑的性质就可以了。

这里涉及到一个同调群的概念,同调群是很多链组成,链一个复形上每个单形的有向的成分集合而成的。这些有向的单形的边形成了一个图论,而图论可以用拉普拉斯矩阵拉表示。所以拓扑中的同调群可以用矩阵来表示。

这个矩阵的研究往往就是看维度有关的信息,就是秩。

这个秩的大小与组成单形的个数有一个不等式关系。

这个不等式关系是恒成立的。

所以莫尔斯可以通过研究该多面体的可微分函数来分析多面体的拓扑。

根据马斯顿·莫尔斯的见解,在多面体上的典型可微函数将直接反映拓扑结构。莫尔斯理论允许人们找到CW结构并处理多面体的分解,并获得关于它们的同源性实质信息。

莫尔斯原来将他的理论应用于测地学(路径上能量函数的关键点)。这些技术在Raoul Bott的周期定理的证明中被使用。

人气小说推荐More+

腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客
我能召唤历史喵
我能召唤历史喵
关于我能召唤历史喵:陈行最近玩了一款名为‘猫猫荣耀’的历史抽卡养成类猫咪游戏,只不过令陈行没想到的是,自己抽到的猫猫竟然都是真实存在的。元璋喵:“咱就是大明皇帝朱元璋,喵~清照喵:“豪放派?我们婉约派打的就是你们豪放派,喵呜~!望着这一大家子的猫,陈行忍不住叹了口气。直到金光闪过,一个自称是‘刘秀喵’的熊猫出现在了客厅之中……“我擦,熊猫也算猫?圣火昭昭,圣光耀耀,凡我弟子,喵喵喵喵。作为一个有
呜喵王之怒
渡执录
渡执录
大昭王朝设镇邪司,分御妖、镇鬼、狩灵三脉治之,处理天下玄异事。五百年前,神器乾坤珏降世,皇室夺得乾玉,坤玉却于混战中失踪。此后天下器灵皆陷入沉睡,狩灵一脉因无所用被朝廷遣散,唯有梅笑山师徒坚守传承。今九州灾异频发,国运式微。国师夜观星象,断言坤玉即将现世,唯有双玉合璧方可重铸山河。狩灵传人程庭芜,镇邪司首座贺云骁,因命运羁绊卷入这场纷争,共赴险途。当沉睡的器灵再度苏醒,当断代的狩灵之道重见天日。
会码字的馒头猫
听懂宠兽说话,我在末世带飞国家
听懂宠兽说话,我在末世带飞国家
(动物读心+末世+御兽流+带飞祖国+雄竞修罗场)周伊因意外猝死,穿成了异世小可怜不说,还一出场便遇到了危机!那便是被一个巨大的猫科动物追!紧急之下周伊想都没想疯狂逃命。也不知是不是生死危机让周伊激发了潜能,她居然于危难间激活了系统,拥有了动物读心的技能!甚至在系统的帮助下,契约了大猫,成为此方世界蓝星,第一个御兽师。系统001:【叮——检测到宿主触发主线任务,主线任务发布中——已发布主线任务。主
半糖布丁奶茶
英灵祭:全面战争
英灵祭:全面战争
关于英灵祭:全面战争:群像+英灵+历史+轻小说(非纯爽文、日常幽默、初中及初中以下的读者慎入、无cp、剧情严谨、逻辑清晰、智斗、武斗、杀伐果断)剑气、道术、魔法,东方英灵与西方英灵的对决!在历史的岁月长河中,他们是无人不知无人不晓的英灵,本不该相遇的ta们却因为一场祭典同时被召唤到了这个世界,这就是鲜为人知的英灵祭。女主灵芝,代表着为恩学院参加了本届英灵祭,拿着后羿弓的她却召唤了与之毫无关联的英
为你独爱