数学心

第四百五十章 杜勃维茨基-米柳金切锥(流形)(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

一种有关实线性空间中的集合的特殊的锥.它定义为实线性空间的集合中的一点上的切方向的全体.有限维空间中的光滑曲线、曲面以至更一般的光滑流形中的一点处的切方向的全体是可以通过微分法明确定义的.

杜勃维茨基说:“我们现在需要研究关于不同坐标之间的仿射变化,也就是坐标之间会乘以矩阵来互相变化。然后需要找到一种变化的方法,还有一种形状,让这个形状上的每个点上的向量都一一对应。”

米柳金说:“那只能是找凸集,一种没有凹面的形状。凸集合上每个点都有切线,这个切线就是向量形成的一个锥形。是一种切锥。”

杜波维茨基说:“有理,毕竟凸面物上的切线没办法好好研究。”

米柳金和杜波维茨基都开始各自研究各种情况的切锥。

再次之前有一种切锥,是相依锥.这种锥是布里冈(Bouligand,G.L.)在20世纪30年代为研究几何问题而提出的,后来在非线性规划研究中又被重新提出,目前在非线性规划的文献中所说的切锥通常就指这种锥。这是一个闭锥。

而米柳金和杜波维茨基提出的是邻接锥,亦称中间锥、可导锥、杜勃维茨基-米柳金锥、尤尔塞斯科锥。

后来一个叫克拉克的数学家提出了克拉克切锥。亦称围邻锥.它是克拉克(Clarke,F.H.)在研究局部李普希茨函数的广义梯度理论时提出的。

这几种锥依次一个比一个小.但当K是凸集时,它们都与原来定义的切锥重合.

这些切锥也可以用序列极限来

对Q,R,S取各种不同的值及不同的次序,由此可定义出几十种切锥.其中最大的是T∃∃∃(K,x),它称为共依锥,也是布里冈在30年代引进的;最小的是Tᗄᗄᗄ(K,x),它称为超切锥,这是个开凸锥,当它非空时,恰好是CK(x)的内部;T·ᗄᗄ(K,x)有时也有应用,它称为内部锥,也称杜勃维茨基-米柳金锥。

正如在经典分析中,导数概念和切方向的概念是紧密联系在一起的,在非光滑分析中,各种广义导数概念就可通过各种切锥来定义.此外,还有若干种切锥的概念不能包括在上述一般定义中.

人气小说推荐More+

爱情公寓之我竟是胡一菲的学弟
爱情公寓之我竟是胡一菲的学弟
关于爱情公寓之我竟是胡一菲的学弟:林霄没想到只是下班吃个麻辣烫而已,竟然就穿越到新的世界。原本以为只是重新过平淡的一生,就意外遇见了爱情公寓里面的人,还是武力值最高的胡一菲,林霄才知道原来现在这个世界是各种影视剧的综合世界。既然知道了爱情公寓的存在,前世就是个爱情公寓迷的林霄当然不能错过最好的朋友在身边、最爱的人在对面的生活啦。
一只快乐的梨
五个兽夫玩虐恋?雌主她只想离婚
五个兽夫玩虐恋?雌主她只想离婚
关于五个兽夫玩虐恋?雌主她只想离婚:普通女孩棠西,一次性迎了五个身世显赫的兽夫进门。各个高大帅气不说,还都说对她一见钟情。五个兽夫用积攒三百年的人脉与能力,共同交织了一张向棠西复仇的网。他们恨她,却又在她流露出一丝爱意时,再次沉沦。让他们没想到的是,柔弱的棠西,在他们的折磨下,越来越强大,甚至能以一己之力,挑战天地秩序。兽夫:“我们恨你,但只要你说你爱我们……棠西:“离婚!她有钱有权有能力,她有
堂前燕飞
听懂宠兽说话,我在末世带飞国家
听懂宠兽说话,我在末世带飞国家
(动物读心+末世+御兽流+带飞祖国+雄竞修罗场)周伊因意外猝死,穿成了异世小可怜不说,还一出场便遇到了危机!那便是被一个巨大的猫科动物追!紧急之下周伊想都没想疯狂逃命。也不知是不是生死危机让周伊激发了潜能,她居然于危难间激活了系统,拥有了动物读心的技能!甚至在系统的帮助下,契约了大猫,成为此方世界蓝星,第一个御兽师。系统001:【叮——检测到宿主触发主线任务,主线任务发布中——已发布主线任务。主
半糖布丁奶茶
重生一回,我在医学界疯狂摆烂
重生一回,我在医学界疯狂摆烂
(神医+系统+重生+无脑爽文+医学界摆烂+多职业+娱乐圈+科学界)本文属于无脑爽文,反派有强行降智的嫌疑,当然,男主的主线并不是一帆风顺的,注意:本文设定为都市框架的前提下,略带一点点圣母内容,根据读者大大们的反馈情况可能会出现一些微虐情节,请不要给作者寄刀片。祝大家阅读愉快
文刂氵羊
腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客