数学心

第三百九十六章 伯恩赛德的表示理论(群论)(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

英国数学家威廉·伯恩赛德在讲一些数学问题的时候,经常把表示理论这样的词说出来。

乔迪·威廉姆森说:“你一直说表示理论,这样的词,这是你的口头禅,还是一个数学理论。”

伯恩赛德说:“是一个理论。”

乔迪怀疑的问到:“表示的是什么?”

伯恩赛德说:“就是一种是一种把复杂的事物用较简单的事物‘表示’的方法。”

乔迪说:“我问的具体的是什么?是群?”

伯恩赛德说:“即使是群也有很多中不同的表示呢?”

乔迪叹气说:“我试着猜猜,比如用不可约群的组成来表示任何一个群这一类型的对吧?”

伯恩赛德说:“这是其中之一,复杂的对象通常是数学对象的集合,比如数字或对称性,它们彼此之间有着特殊的结构关系。”

乔迪说:“听起来不像是新东西,就是一个东西找基本单位而已。”

伯恩赛德说:“在1897年的时候,我觉得这种非正统的观点根本不会产生任何新结果。我只是在用矩阵的方法表示一切,毕竟数学家基本上知道关于矩阵的一切。它是为数不多的被完全理解的数学科目之一。而且他完善到可以表示任何一种东西。”

乔迪说:“可问题是,关于你说的表示理论,研究这个问题是否合理,现在还不清楚。”

伯恩赛德说:“这种问题让人难以察觉,但是随着数学的深入发展,肯定越来越重要。比如群组很重要,我们要把它们表示出来,而比较简单的对象是称为矩阵的数字数组,它是线性代数的核心元素。群组是抽象的,通常很难掌握,而矩阵和线性代数是基本的。要了解如何用矩阵表示群组,有必要依次考虑每个对象。”

乔迪说:“恩,比如李群的表示就需要这样。”

伯恩赛德说:“举个粒子,考虑一个等边三角形的六种对称性:两个旋转对称,120度和240度,三种反射对称,从每个顶点绘制的线穿过对边的中点,一个恒等对称,对三角形不做任何改变。这六种对称形成了一个封闭的元素宇宙,也就是一个群组,它的正式名称是S_3。它们组成了一个组,因为您可以按任意顺序将任意数量的它们应用到三角形中,并且最终结果将与仅应用一个对称性相同。例如,先反射三角形,然后将它旋转120度,重新排列顶点,就像你仅仅执行了一个不同的对称变换一样。数学家将两种对称的结合称为合成:一组反射与另一组旋转的一个组合产生第三组,称之为不同的反射。你可以像数学家一样,把合成看作是乘法运算。如果考虑非零实数,这是最容易看出的,它们也构成了一组。实数有一个单位元素,用数字1。任何与1组合或乘以1的实数保持不变。你也可以乘任意实数的组合,以任何你想要的顺序,乘积总是一个实数。数学家们说,实数组在乘法下是“封闭的”,这意味着你不会仅仅通过元素的乘法就离开这个实数集群组。”

乔迪说:“要按照你说的那个例子,李群包含无限多个元素,而不是六个元素。”

伯恩赛德说:“没错,要解决一个重要的问题,往往需要理解与之相关的特定群组。但是大多数群组比等边三角形的对称群组更难理解。我们不可避免要面对表示理论的领域,它把有时神秘的群组的世界转换成充分约束的线性代数领域。”

乔迪说:“是的,它们编码质数、几何空间和几乎所有数学家最关心的东西的信息。”

伯恩赛德说:“只不过你要用矩阵,也就是线性代数来表示这些,里面就会出现扩大、平移、反转、剪切、选择和反射这样的词汇。这些就相当与我们数学中的加减乘除这样的东西一般。”

乔迪说:“我刚刚想多了,还以为你找到你加减乘除模之外的新的运算方式呢。”

伯恩赛德说:“表示理论根据一定的规则,为群组中的每个元素分配一个矩阵,从而在群组理论和线性代数之间架起了一座桥梁。例如,必须将群组中的单位元素分配为单位矩阵。分配还必须尊重群组中元素之间的关系。如果一个反射乘以给定的旋转等于第二次反射,那么分配给第一次反射的矩阵乘以分配给旋转的矩阵必须等于分配给第二次反射的矩阵。符合这些要求的矩阵集合称为群组的表示。该表示提供了一组简化的图像,就像黑白图像可以作为原始彩色图像的低成本模板。换句话说,它“记住”了关于这个群组的一些基本但重要的信息,却忽略了其他的信息。数学家的目标是避免纠缠于一个群组的全部复杂性;相反,他们通过观察它在转化为简化的线性变换格式时的行为来了解它的性质。”

乔迪说:“一个群组几乎总是可以以多种方式表示。例如,S_3在使用实数填充矩阵时有三种不同的表示:简单表示、反射表示和符号表示。”

伯恩赛德说:“我们进下来的工作就是将给定群组的表示形式整理成一个表,称为字符表,该表总结了有关组的信息。行引用每个不同的表示,列指的是这个表示中的重要矩阵:分配给组中的单位元素的矩阵,以及分配给组中“生成”元素的矩阵,这些元素一起产生所有其他元素。表中的条目是一个称为每个矩阵的“trace”的值,通过对从矩阵左上角到右下角的对角条目求和来计算。字符表提供了该组的简化图。其中的每个表示提供的信息略有不同。数学家将各种观点结合成一个整体印象。”

乔迪说:“你有很多不同的表征,它们记住不同的东西,当你把所有的信息放在一起时,你就能在某种意义上看到你的团队的这种万花筒般的画面。”

伯恩赛德说:“当然,我们肯定就是要把问题简化,所以一些最有效的表示法既不涉及实数也不涉及复数。相反,他们使用的是带有“模块化”数字系统的条目的矩阵。这是时钟算术的世界,在这个世界里,7 + 6环绕12小时的时钟等于1。具有相同字符表,使用实数表示的两组可能具有不同的字符表的使用模块化表示,从而允许你将它们区分开来。”

自一个多世纪以来,“表示理论”一直是许多最重要的数学发现的关键成分。然而,它的用处在一开始还是很难被察觉。

今天,“表示理论”是许多数学领域的中心工具(代数,拓扑,几何,数学物理和数论等)。这种表示理论的哲学在20世纪下半叶已经吞噬了大量的数学。

表示理论在安德鲁·怀尔斯1994年对费马最后定理的里程碑式证明中发挥了重要作用。问题是关于a^n + b^n = c^n这种形式的方程是否存在整数解。

怀尔斯证明当n大于2时,不存在这样的解。然而,直接证明它的不存在太困难了。

相反,怀尔斯使用的是一组模块表示,如果群组存在的话,这些表示就会被附加到组上。他证明了这一族模表示不存在,这意味着群组不存在,这意味着解也不存在。

这也就意味着,在威廉·伯恩赛德认为表征理论无用的100年后,它成为了20世纪最著名的证明理论的关键组成部分。

温斯坦说:“我无法想象费马最后定理的任何证明,都与表示理论无关。”

人气小说推荐More+

爱情公寓之我竟是胡一菲的学弟
爱情公寓之我竟是胡一菲的学弟
关于爱情公寓之我竟是胡一菲的学弟:林霄没想到只是下班吃个麻辣烫而已,竟然就穿越到新的世界。原本以为只是重新过平淡的一生,就意外遇见了爱情公寓里面的人,还是武力值最高的胡一菲,林霄才知道原来现在这个世界是各种影视剧的综合世界。既然知道了爱情公寓的存在,前世就是个爱情公寓迷的林霄当然不能错过最好的朋友在身边、最爱的人在对面的生活啦。
一只快乐的梨
五个兽夫玩虐恋?雌主她只想离婚
五个兽夫玩虐恋?雌主她只想离婚
关于五个兽夫玩虐恋?雌主她只想离婚:普通女孩棠西,一次性迎了五个身世显赫的兽夫进门。各个高大帅气不说,还都说对她一见钟情。五个兽夫用积攒三百年的人脉与能力,共同交织了一张向棠西复仇的网。他们恨她,却又在她流露出一丝爱意时,再次沉沦。让他们没想到的是,柔弱的棠西,在他们的折磨下,越来越强大,甚至能以一己之力,挑战天地秩序。兽夫:“我们恨你,但只要你说你爱我们……棠西:“离婚!她有钱有权有能力,她有
堂前燕飞
听懂宠兽说话,我在末世带飞国家
听懂宠兽说话,我在末世带飞国家
(动物读心+末世+御兽流+带飞祖国+雄竞修罗场)周伊因意外猝死,穿成了异世小可怜不说,还一出场便遇到了危机!那便是被一个巨大的猫科动物追!紧急之下周伊想都没想疯狂逃命。也不知是不是生死危机让周伊激发了潜能,她居然于危难间激活了系统,拥有了动物读心的技能!甚至在系统的帮助下,契约了大猫,成为此方世界蓝星,第一个御兽师。系统001:【叮——检测到宿主触发主线任务,主线任务发布中——已发布主线任务。主
半糖布丁奶茶
重生一回,我在医学界疯狂摆烂
重生一回,我在医学界疯狂摆烂
(神医+系统+重生+无脑爽文+医学界摆烂+多职业+娱乐圈+科学界)本文属于无脑爽文,反派有强行降智的嫌疑,当然,男主的主线并不是一帆风顺的,注意:本文设定为都市框架的前提下,略带一点点圣母内容,根据读者大大们的反馈情况可能会出现一些微虐情节,请不要给作者寄刀片。祝大家阅读愉快
文刂氵羊
腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客