数学心

第三百三十四章 戴德金原理和定理(微积分)(1/1)

星阅小说网【wap.xyxsb.com】第一时间更新《数学心》最新章节。

在对有理数集Q利用戴德金分割构造实数之前,先给出一个引理:任意两个有理数之间,必然存在无数个有理数。

引理非常容易证明,设a和b是两个有理数,那么它们的算术平均值c=(a+b)/2也必然是有理数并且c一定介于a和b之间。

戴德金定理是刻画实数连续性的命题之一,也称实数完备性定理。

它断言,若A|A'是实数系R(即有理数集的所有戴德金分割的集合,并以明显的方式定义了大小顺序及四则运算)的戴德金分割,则由它可确定惟一实数β,若β落在A内,则它为A中最大元,若β落在A'内,则它是A'中最小元。

这个定理说明,R的分割与全体实数是一一对应的,反映在数轴上,它又说明,R的分割不再出现空隙,因此,这个定理可用来刻画实数的连续性。

数学家发现了除数字以外的各种形式的数学,有各种群、环、域、模等各种重要的结构。所以数学家不可避免的要反思,数字,也就是实数是怎样的一种系统,是否在以上的分类中有严格性。或者有什么样的特殊性,或者是否是一个好的例子。

戴德金开始跟黎曼和狄利克雷等人讨论过关于实数系统的严谨性。

戴德金对狄利克雷说:“你让我去看看实数是否符合对应的群、环、域、模这种结构,那就需要挨个去看看他们的严格性。那么我们要对这个看似简单,但是却有点精彩而复杂的系统进行梳理的时候。”

狄利克雷说:“没错,这是迟早的,也是有意义的。我们定义了自然数、整数、有理数、无理数这些东西,但是我们并不是真正的了解它,因为他们的严格性有待商榷。用了这么久,也该看看这些都是什么样子了。”

戴德金说:“其中最为关键的,是一个看似简单,但是却麻烦重重的有理数和无理数的区分方式。因为他们都掺杂的连续的在数轴上,我们需要有一个理论,能够让这些东西进行区分。”

狄利克雷说:“是的他们的混杂,是如此的连绵不绝,却有膈应的无穷。”

戴德金说:“我已经找到了一种分割的方式,能够证明实数是完备的。”

狄利克雷说:“可以保证数轴直线的连续性?如何分割?”

戴德金说:“如果把直线的所有点分成两类,使得:每个点恰属于一个类,每个类都不空。然后,第一类的每个点都在第二类的每个点的前面,或者在第一类里存在着这样的点,使第一类中所有其余的点都在它的前面;或者在第二类里存在着这样的点,它在第二类的所有其余的点的前面。”

狄利克雷说:“这能说明实数的什么性质?听起来怎么没有感觉?”

戴德金说:“可以推出数理论中的六大基本定理:确界原理、单调有界定理、闭区间套定理、有限覆盖定理、致密性定理和柯西收敛准则。”

狄利克雷说:“确界原理我知道,波尔查诺发现了确界原理,就是讲如果有实数集有上界,那就有上确界。有下界,就有下确界。”

戴德金说:“这个看似废话的定理有一定的重要性,知道如果有界,必然就会有最大值和最小值。”

狄利克雷说:“单调有界也是具有单调性的,必然哟最大值和最小值。”

戴德金说:“闭区间套定理,是实数连续性的一种描述,几何意义是,有一列闭线段,两个端点也属于此线段,后者被包含在前者之中,并且由这些闭线段的长构成的数列以О为极限,则这一列闭线段存在唯一一个公共点。”

狄利克雷说:“一种不动点在其中。”

戴德金说:“有限覆盖定理,是设H是闭区间[a,b]的一个无限开覆盖,则必可以从H中选择有限个开区间来覆盖[a,b]。”

狄利克雷说:“有限覆盖定理是一个有用而且重要的定理.它是数学分析处理问题的一种重要方法,在数学各领域中都有广泛的应用.有限覆盖定理的作用是从覆盖闭区间的无限个开区间中能选出有限个开区间也覆盖这个闭区间.由“无限转化为有限”是质的变化,它对证明函数的某些性质提供了新的数学方法。”

戴德金说:“致密性原理就是有界数列必有收敛子列。”

狄利克雷说:“同样可以以你的分割法来证明。”

戴德金说:“柯西收敛,这也是不可避免了,这是完备性的一个体现。”

戴德金于1872年提出来的,在构造欧氏几何的公理系统时,可以选取它作为连续公理,在希尔伯特公理组Ⅰ,Ⅱ,Ⅲ的基础上,阿基米德公理和康托尔公理合在一起与戴德金原理等价。

人气小说推荐More+

腌臜玫瑰
腌臜玫瑰
关于腌臜玫瑰:孤女夏橙认祖归宗后,最讨厌那个取代了自己位置的养女。养女纯洁无害,温柔伪善,衬得夏橙恶人一个,无可救药。夏橙收敛锋芒,学着养女的模样做一个好孩子,可面上越纯善,她就越知道自己心里到底想要什么......无论是养女喜欢的,还是喜欢养女的,她统统都要抢过来。风头,前途,家产,男人,她都要争上一争,将养女压的翻不过身。但是......风头家产这些都是好控制的死物,唯有那几个男人,渐渐发现
绛河客
渡执录
渡执录
大昭王朝设镇邪司,分御妖、镇鬼、狩灵三脉治之,处理天下玄异事。五百年前,神器乾坤珏降世,皇室夺得乾玉,坤玉却于混战中失踪。此后天下器灵皆陷入沉睡,狩灵一脉因无所用被朝廷遣散,唯有梅笑山师徒坚守传承。今九州灾异频发,国运式微。国师夜观星象,断言坤玉即将现世,唯有双玉合璧方可重铸山河。狩灵传人程庭芜,镇邪司首座贺云骁,因命运羁绊卷入这场纷争,共赴险途。当沉睡的器灵再度苏醒,当断代的狩灵之道重见天日。
会码字的馒头猫
听懂宠兽说话,我在末世带飞国家
听懂宠兽说话,我在末世带飞国家
(动物读心+末世+御兽流+带飞祖国+雄竞修罗场)周伊因意外猝死,穿成了异世小可怜不说,还一出场便遇到了危机!那便是被一个巨大的猫科动物追!紧急之下周伊想都没想疯狂逃命。也不知是不是生死危机让周伊激发了潜能,她居然于危难间激活了系统,拥有了动物读心的技能!甚至在系统的帮助下,契约了大猫,成为此方世界蓝星,第一个御兽师。系统001:【叮——检测到宿主触发主线任务,主线任务发布中——已发布主线任务。主
半糖布丁奶茶
我能召唤历史喵
我能召唤历史喵
关于我能召唤历史喵:陈行最近玩了一款名为‘猫猫荣耀’的历史抽卡养成类猫咪游戏,只不过令陈行没想到的是,自己抽到的猫猫竟然都是真实存在的。元璋喵:“咱就是大明皇帝朱元璋,喵~清照喵:“豪放派?我们婉约派打的就是你们豪放派,喵呜~!望着这一大家子的猫,陈行忍不住叹了口气。直到金光闪过,一个自称是‘刘秀喵’的熊猫出现在了客厅之中……“我擦,熊猫也算猫?圣火昭昭,圣光耀耀,凡我弟子,喵喵喵喵。作为一个有
呜喵王之怒
英灵祭:全面战争
英灵祭:全面战争
关于英灵祭:全面战争:群像+英灵+历史+轻小说(非纯爽文、日常幽默、初中及初中以下的读者慎入、无cp、剧情严谨、逻辑清晰、智斗、武斗、杀伐果断)剑气、道术、魔法,东方英灵与西方英灵的对决!在历史的岁月长河中,他们是无人不知无人不晓的英灵,本不该相遇的ta们却因为一场祭典同时被召唤到了这个世界,这就是鲜为人知的英灵祭。女主灵芝,代表着为恩学院参加了本届英灵祭,拿着后羿弓的她却召唤了与之毫无关联的英
为你独爱